The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The analyticity of q -concave sets of locally finite Hausdorff ( 2 n - 2 q ) measure”

Generically strongly q -convex complex manifolds

Terrence Napier, Mohan Ramachandran (2001)

Annales de l’institut Fourier

Similarity:

Suppose ϕ is a real analytic plurisubharmonic exhaustion function on a connected noncompact complex manifold X . The main result is that if the real analytic set of points at which ϕ is not strongly q -convex is of dimension at most 2 q + 1 , then almost every sufficiently large sublevel of ϕ is strongly q -convex as a complex manifold. For X of dimension 2 , this is a special case of a theorem of Diederich and Ohsawa. A version for ϕ real analytic with corners is also obtained.

Analytic extension from non-pseudoconvex boundaries and A ( D ) -convexity

Christine Laurent-Thiébaut, Egmon Porten (2003)

Annales de l’institut Fourier

Similarity:

Let D n , n 2 , be a domain with C 2 -boundary and K D be a compact set such that D K is connected. We study univalent analytic extension of CR-functions from D K to parts of D . Call K CR-convex if its A ( D ) -convex hull, A ( D ) - hull ( K ) , satisfies K = D A ( D ) - hull ( K ) ( A ( D ) denoting the space of functions, which are holomorphic on D and continuous up to D ). The main theorem of the paper gives analytic extension to D A ( D ) - hull ( K ) , if K is CR- convex.

Overstability and resonance

Augustin Fruchard, Reinhard Schäfke (2003)

Annales de l’institut Fourier

Similarity:

We consider a singularity perturbed nonlinear differential equation ε u ' = f ( x ) u + + ε P ( x , u , ε ) which we suppose real analytic for x near some interval [ a , b ] and small | u | , | ε | . We furthermore suppose that 0 is a turning point, namely that x f ( x ) is positive if x 0 . We prove that the existence of nicely behaved (as ϵ 0 ) local (at x = 0 ) or global, real analytic or C solutions is equivalent to the existence of a formal series solution u n ( x ) ε n with u n analytic at x = 0 . The main tool of a proof is a new “principle of analytic continuation” for...

A general version of the Hartogs extension theorem for separately holomorphic mappings between complex analytic spaces

Viêt-Anh Nguyên (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Using recent development in Poletsky theory of discs, we prove the following result: Let X , Y be two complex manifolds, let Z be a complex analytic space which possesses the Hartogs extension property, let A (resp. B ) be a non locally pluripolar subset of X (resp. Y ). We show that every separately holomorphic mapping f : W : = ( A × Y ) ( X × B ) Z extends to a holomorphic mapping f ^ on W ^ : = ( z , w ) X × Y : ω ˜ ( z , A , X ) + ω ˜ ( w , B , Y ) < 1 such that f ^ = f on W W ^ , where ω ˜ ( · , A , X ) (resp. ω ˜ ( · , B , Y ) ) is the plurisubharmonic measure of A (resp. B ) relative to X (resp. Y ). Generalizations...

On the local meromorphic extension of CR meromorphic mappings

Joël Merker, Egmont Porten (1998)

Annales Polonici Mathematici

Similarity:

Let M be a generic CR submanifold in m + n , m = CR dim M ≥ 1, n = codim M ≥ 1, d = dim M = 2m + n. A CR meromorphic mapping (in the sense of Harvey-Lawson) is a triple ( f , f , [ Γ f ] ) , where: 1) f : f Y is a ¹-smooth mapping defined over a dense open subset f of M with values in a projective manifold Y; 2) the closure Γ f of its graph in m + n × Y defines an oriented scarred ¹-smooth CR manifold of CR dimension m (i.e. CR outside a closed thin set) and 3) d [ Γ f ] = 0 in the sense of currents. We prove that ( f , f , [ Γ f ] ) extends meromorphically...