Displaying similar documents to “The optimal shape of a dendrite sealed at both ends”

Numerical minimization of eigenmodes of a membrane with respect to the domain

Édouard Oudet (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we introduce a numerical approach adapted to the minimization of the eigenmodes of a membrane with respect to the domain. This method is based on the combination of the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables both changing the topology and working on a fixed regular grid.

Optimal measures for the fundamental gap of Schrödinger operators

Nicolas Varchon (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study the potential which minimizes the fundamental gap of the Schrödinger operator under the total mass constraint. We consider the relaxed potential and prove a regularity result for the optimal one, we also give a description of it. A consequence of this result is the existence of an optimal potential under constraints.

Shape and topology optimization of the robust compliance via the level set method

François Jouve, Grégoire Allaire, Frédéric de Gournay (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The goal of this paper is to study the so-called worst-case or robust optimal design problem for minimal compliance. In the context of linear elasticity we seek an optimal shape which minimizes the largest, or worst, compliance when the loads are subject to some unknown perturbations. We first prove that, for a fixed shape, there exists indeed a worst perturbation (possibly non unique) that we characterize as the maximizer of a nonlinear energy. We also propose a stable algorithm to...

On an optimal shape design problem in conduction

José Carlos Bellido (2006)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we analyze a typical shape optimization problem in two-dimensional conductivity. We study relaxation for this problem itself. We also analyze the question of the approximation of this problem by the two-phase optimal design problems obtained when we fill out the holes that we want to design in the original problem by a very poor conductor, that we make to converge to zero.

Optimal design of turbines with an attached mass

Boris P. Belinskiy, C. Maeve McCarthy, Terry J. Walters (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We minimize, with respect to shape, the moment of inertia of a turbine having the given lowest eigenfrequency of the torsional oscillations. The necessary conditions of optimality in conjunction with certain physical parameters admit a unique optimal design.