The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Harmonic functions on annuli of graphs”

The Path-Distance-Width of Hypercubes

Yota Otachi (2013)

Discussiones Mathematicae Graph Theory

Similarity:

The path-distance-width of a connected graph G is the minimum integer w satisfying that there is a nonempty subset of S ⊆ V (G) such that the number of the vertices with distance i from S is at most w for any nonnegative integer i. In this note, we determine the path-distance-width of hypercubes.

On the axiomatic of harmonic functions I

Corneliu Constantinescu, A. Cornea (1963)

Annales de l'institut Fourier

Similarity:

On présente quelques remarques sur l’axiomatique des fonctions harmoniques de M. Brelot. Ainsi, on montre qu’il est possible de remplacer dans l’axiome 3 l’ensemble ordonné filtrant des fonctions harmoniques par une suite monotone, et, s’il existe une fonction surharmonique positive alors : a) l’espace est la réunion d’un fermé polaire et d’un ouvert σ -compact ; b) l’espace possède une base dénombrable s’il est localement à base dénombrable ; c) l’ensemble des composants...

Harmonic functions on the real hyperbolic ball I: Boundary values and atomic decomposition of Hardy spaces

Philippe Jaming (1999)

Colloquium Mathematicae

Similarity:

We study harmonic functions for the Laplace-eltrami operator on the real hyperbolic space n . We obtain necessary and sufficient conditions for these functions and their normal derivatives to have a boundary distribution. In doing so, we consider different behaviors of hyperbolic harmonic functions according to the parity of the dimension of the hyperbolic ball n . We then study the Hardy spaces H p ( n ) , 0

p -harmonic measure is not additive on null sets

José G. Llorente, Juan J. Manfredi, Jang-Mei Wu (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

When 1 < p < and p 2 the p -harmonic measure on the boundary of the half plane + 2 is not additive on null sets. In fact, there are finitely many sets E 1 , E 2 ,..., E κ in , of p -harmonic measure zero, such that E 1 E 2 . . . E κ = .