Displaying similar documents to “Propagation of singularities in many-body scattering”

Propagation of singularities in many-body scattering in the presence of bound states

András Vasy (1999)

Journées équations aux dérivées partielles

Similarity:

In these lecture notes we describe the propagation of singularities of tempered distributional solutions u 𝒮 ' of ( H - λ ) u = 0 , where H is a many-body hamiltonian H = Δ + V , Δ 0 , V = a V a , and λ is not a threshold of H , under the assumption that the inter-particle (e.g. two-body) interactions V a are real-valued polyhomogeneous symbols of order - 1 (e.g. Coulomb-type with the singularity at the origin removed). Here the term “singularity” provides a microlocal description of the lack of decay at infinity. Our result is...

Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations

Tanya Christiansen, M. S. Joshi (2003)

Annales de l’institut Fourier

Similarity:

The scattering matrix is defined on a perturbed stratified medium. For a class of perturbations, its main part at fixed energy is a Fourier integral operator on the sphere at infinity. Proving this is facilitated by developing a refined limiting absorption principle. The symbol of the scattering matrix determines the asymptotics of a large class of perturbations.

The resolvent for Laplace-type operators on asymptotically conic spaces

Andrew Hassell, András Vasy (2001)

Annales de l’institut Fourier

Similarity:

Let X be a compact manifold with boundary, and g a scattering metric on X , which may be either of short range or “gravitational” long range type. Thus, g gives X the geometric structure of a complete manifold with an asymptotically conic end. Let H be an operator of the form H = Δ + P , where Δ is the Laplacian with respect to g and P is a self-adjoint first order scattering differential operator with coefficients vanishing at X and satisfying a “gravitational” condition. We define a symbol calculus...