Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits
Gopal Prasad (1982)
Bulletin de la Société Mathématique de France
Similarity:
Gopal Prasad (1982)
Bulletin de la Société Mathématique de France
Similarity:
Armand Borel, Gopal Prasad (1989)
Publications Mathématiques de l'IHÉS
Similarity:
Yves de Cornulier (2006)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Madabusi S. Raghunathan (1976)
Publications Mathématiques de l'IHÉS
Similarity:
Gerhard Röhrle (1998)
Annales de l'institut Fourier
Similarity:
Let be a reductive algebraic group, a parabolic subgroup of with unipotent radical , and a closed connected subgroup of which is normalized by . We show that acts on with finitely many orbits provided is abelian. This generalizes a well-known finiteness result, namely the case when is central in . We also obtain an analogous result for the adjoint action of on invariant linear subspaces of the Lie algebra of which are abelian Lie algebras. Finally, we discuss...
Jürgens, Ulf, Röhrle, Gerhard (2002)
Experimental Mathematics
Similarity:
Alejandro Adem (2001-2002)
Séminaire Bourbaki
Similarity:
Franz J. Fritz (1975)
Rendiconti del Seminario Matematico della Università di Padova
Similarity: