Displaying similar documents to “Large time behaviour in convection-diffusion equations”

Cross-Diffusion Systems with Entropy Structure

Jüngel, Ansgar

Similarity:

Some results on cross-diffusion systems with entropy structure are reviewed. The focus is on local-in-time existence results for general systems with normally elliptic diffusion operators, due to Amann, and global-in-time existence theorems by Lepoutre, Moussa, and co-workers for cross-diffusion systems with an additional Laplace structure. The boundedness-by-entropy method allows for global bounded weak solutions to certain diffusion systems. Furthermore, a partial result on the uniqueness...

Exponential convergence to equilibrium Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics

Marzia Bisi, Laurent Desvillettes, Giampiero Spiga (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:


We show that the entropy method, that has been used successfully in order to prove exponential convergence towards equilibrium with explicit constants in many contexts, among which reaction-diffusion systems coming out of reversible chemistry, can also be used when one considers a reaction-diffusion system corresponding to an irreversible mechanism of dissociation/recombination, for which no natural entropy is available.


Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics

Marzia Bisi, Laurent Desvillettes, Giampiero Spiga (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We show that the entropy method, that has been used successfully in order to prove exponential convergence towards equilibrium with explicit constants in many contexts, among which reaction-diffusion systems coming out of reversible chemistry, can also be used when one considers a reaction-diffusion system corresponding to an irreversible mechanism of dissociation/recombination, for which no natural entropy is available.