The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Patchy vector fields and asymptotic stabilization”

On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients

Ludovic Rifford (2001)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Let x ˙ = f ( x , u ) be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke’s generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov...

Direct design of robustly asymptotically stabilizing hybrid feedback

Rafal Goebel, Andrew R. Teel (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

A direct construction of a stabilizing hybrid feedback that is robust to general measurement error is given for a general nonlinear control system that is asymptotically controllable to a compact set.

Feedback in state constrained optimal control

Francis H. Clarke, Ludovic Rifford, R. J. Stern (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

An optimal control problem is studied, in which the state is required to remain in a compact set S . A control feedback law is constructed which, for given ε > 0 , produces ε -optimal trajectories that satisfy the state constraint universally with respect to all initial conditions in S . The construction relies upon a constraint removal technique which utilizes geometric properties of inner approximations of S and a related trajectory tracking result. The control feedback is shown to possess...