The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Sur l’anneau des entiers des extensions galoisiennes non abéliennes de degré p q des rationnels”

Unités cyclotomiques, unités semi-locales et -extensions

Roland Gillard (1979)

Annales de l'institut Fourier

Similarity:

Soient K un corps abélien réel, un nombre premier, premier au degré de K / Q . Cet article utilise une conjecture de J. Coates et S. Lichtenbaum (ou une conjecture analogue pour = 2 , qu’il énonce et discute) pour étudier, pour chaque étage de la Z -extension de K , la décomposition de la -partie de la formule analytique du nombre de classes suivant l’action du groupe de Galois de K / Q . Pour cela, est établie une formule sur la Φ -composante ( Φ -caractère -adique irréductible) du quotient du groupe...

Décomposition du Galois-module des entiers d'une extension cyclique de degré premier d'un corps de nombres ou d'un corps local

Françoise Bertrandias (1979)

Annales de l'institut Fourier

Similarity:

Soit A un anneau de Dedekind, de corps des fractions K , et soit L une extension galoisienne de K , dont le groupe de Galois G est cyclique d’ordre premier. On note B la clôture intégrale de A dans L . Il existe une unique décomposition du A [ G ] -module B en somme directe de sous-modules indécomposables. On détermine cette décomposition lorsque K est un corps local ou un corps de nombres. Le résultat dépend d’une part des caractères irréductibles de G sur K , d’autre part des nombres de ramification...

Sur la structure galoisienne du groupe des unités d’un corps abélien de type ( p , p )

Lyliane Bouvier, Jean-Jacques Payan (1979)

Annales de l'institut Fourier

Similarity:

Pour décrire la structure galoisienne à Z [ G ] -isomorphisme près du quotient par { ± 1 } du groupe des unités d’une extension abélienne absolue de groupe de Galois G de type ( p , p ) , on amorce la description des Z [ G ] -modules de type fini libres sur Z dont le caractère est contenu dans la représentation d’augmentation. La classification est complète pour les modules de rang inférieur ou égal à 3 ; elle est appliquée à la description donnée par T. Kubota des unités d’un corps biquadratique non cyclique en...

Une formule de Riemann-Hurwitz pour le groupe de Selmer d'une courbe elliptique

Alexis Michel (1993)

Annales de l'institut Fourier

Similarity:

Soit E une courbe elliptique avec multiplication complexe, définie sur un corps de nombres F . Soit p un nombre premier. En ajoutant certains points de p -torsion de E à F , on construit une p -extension F de F . On associe à F un groupe de Selmer. Pour une p -extension galoisienne de F , Wingberg a montré, sous les conjectures arithmétiques usuelles, un analogue de la formule de Riemann-Hurwitz pour le corang du groupe de Selmer en haut de la tour. Nous donnons une nouvelle preuve...

Descente et parallélogramme galoisiens

Richard Massy, Sylvie Monier-Derviaux (1999)

Journal de théorie des nombres de Bordeaux

Similarity:

Soit p un nombre premier impair. Soit D / J une p -extension galoisienne de corps ne contenant pas les racines p -ièmes de l’unité : J μ p = 1 . Notons G le groupe de Galois de D / J et Φ ( G ) son sous-groupe de Frattini. Via une notion de descente galoisienne et les parallélogrammes galoisiens qu’elle induit, nous construisons ici toutes les extensions D / J telles que Φ ( G ) soit d’ordre p .

Sur l’arithmétique des extensions galoisiennes à groupe de Galois diédral d’ordre 2 p

Jacques Martinet (1969)

Annales de l'institut Fourier

Similarity:

Nous nous occupons dans cet article de l’arithmétique des extensions galoisiennes N / κ dont le groupe de Galois est un groupe diédral D p , p premier. Le théorème fondamental est le suivant (Théorème de la base normale) : Soit A un anneau principal de caractéristique O , tel que A / p A soit un corps à p éléments. Soit κ le corps des fractions de A , N une extension galoisienne de κ dont le groupe de Galois G est isomorphe à D p , et B la clôture intégrale de A dans N . Supposons en outre...