Displaying similar documents to “Répartition des nombres premiers de la forme [ n c ]

Fonction sommatoire de la fonction de Möbius, 3. Majorations asymptotiques effectives fortes

M. El Marraki (1995)

Journal de théorie des nombres de Bordeaux

Similarity:

On établit les majorations M ( x ) 0 . 002969 x ( log x ) 1 / 2 , valable pour x 142194 , M ( x ) 0 . 6437752 x log x qui est la meilleure majoration possible en x log x valable pour tout x > 1 ( M ( 5 ) = 2 = 0 . 6437752 × 5 log 5 ) , et d’autres analogues. On montre enfin comment trouver des majorations effectives M ( x ) > c k x ( log log x ) 2 k ( log x ) k pour tout k .

Sur les entiers inférieurs à x ayant plus de log ( x ) diviseurs

Marc Deléglise, Jean-Louis Nicolas (1994)

Journal de théorie des nombres de Bordeaux

Similarity:

Let τ ( n ) be the number of divisors of n ; let us define S λ ( x ) = C a r d n x ; τ ( n ) ( log x ) λ log 2 if λ 1 C a r d n x ; τ ( n ) < ( log x ) λ log 2 if λ < 1 It has been shown that, if we set f ( λ , x ) = x ( log x ) λ log λ - λ + 1 log log x the quotient S λ ( x ) / f ( λ , x ) is bounded for λ fixed. The aim of this paper is to give an explicit value for the inferior and superior limits of this quotient when λ 2 . For instance, when λ = 1 / log 2 , we prove lim inf S λ ( x ) f ( λ , x ) = 0 . 938278681143 and lim inf S λ ( x ) f ( λ , x ) = 1 . 148126773469

Sommes des chiffres de multiples d'entiers

Cécile Dartyge, Gérald Tenenbaum (2005)

Annales de l'institut Fourier

Similarity:

Soit q , q 2 . Pour n , on note s q ( n ) la somme des chiffres de n en base q . Nous donnons des majorations de sommes d’exponentielles de la forme G ( x , y , θ ; α , 𝐡 ) = x < n x + y exp ( 2 i π ( α 1 s q ( h 1 n ) + + α r s q ( h r n ) + θ n ) ) , pour r * , 𝐡 * r et θ r . De telles sommes ont déjà été étudiées dans le cas r = 1 par Gelfond, et pour r 2 entre autre par Coquet et Solinas. Nos résultats étendent le domaine de validité en 𝐡 de ces précédents travaux pour r 2 , sont plus précis et ont l’avantage d’être uniformes en x et r et effectifs en 𝐡 . Ce contrôle soigneux des paramètres...

Bornes effectives pour certaines fonctions concernant les nombres premiers

Jean-Pierre Massias, Guy Robin (1996)

Journal de théorie des nombres de Bordeaux

Similarity:

Si p k est le k è m e nombre premier, θ ( p k ) = i = 1 k log p i la fonction de Chebyshev. Nous obtenons de nouvelles estimations et des améliorations des bornes données par Rosser et Schoenfeld, Schoenfeld et Robin pour les fonctions p k , θ ( p k ) , S k = i = 1 k p i , et S ( x ) = p x p . Ces estimations sont obtenues en utilisant des méthodes basées sur l’intégrale de Stieltjes et par calcul direct pour les petites valeurs.

Répartition en moyenne de certaines fonctions arithmétiques sur l'ensemble des entiers sans grand facteur premier

Mongi Naimi (2003)

Journal de théorie des nombres de Bordeaux

Similarity:

Soient λ > 1 , 0 < η < 1 2 et g ( n ) une fonction multiplicative vérifiant g ( p ) = 1 / λ g ( n ) n - η . Dans ce travail, on établit une formule asymptotique de la somme n g ( n ) x ; P ( n ) y 1 , valable dans le domaine exp ( log log c x ) 5 3 + ϵ y / λ c x , et on donne une condition nécessaire et suffisante pour que cette somme soit équivalente à n x ; P ( n ) y 1 / g ( n ) .