Displaying similar documents to “Formes linéaires p -adiques et prolongement analytique”

Sur une condition suffisante pour l’existence de mesures p -adiques admissibles

Alexei Panchishkin (2003)

Journal de théorie des nombres de Bordeaux

Similarity:

On donne une nouvelle condition suffisante pour l’existence des mesures p -adiques admissibles μ obtenues à partir de suites de distributions Φ j ( j 0 ) à valeurs dans les espaces de formes modulaires. On utilise la projection caractéristique sur le sous-espace primaire associé à une valeur propre non nulle α de l’opérateur U d’Atkin. Notre condition est exprimée en termes des congruences entre les coefficients de Fourier des formes modulaires Φ j . On montre comment vérifier ces congruences, et...

Applications arithmétiques de l'étude des valeurs aux entiers négatifs des séries de Dirichlet associées à un polynôme

Philippe Cassou-Noguès (1981)

Annales de l'institut Fourier

Similarity:

Nous étudions les fonctions p -adiques associées à des séries du type Z ( P , Q , ξ ) ( s ) = n N r Q ( n ) ξ n P ( n ) - s dans certains cas, où elles admettent un prolongement méromorphe à C avec un nombre fini de pôles et des valeurs aux entiers négatifs algébriques. On retrouve comme cas particulier les fonctions L p -adiques des corps totalement réels et les fonctions Γ -multiples p -adiques.

Nombres de Bell et somme de factorielles

Daniel Barsky, Bénali Benzaghou (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Dj. Kurepa a conjecturé que pour tout nombre premier impair, p , la somme n = 0 p - 1 n ! n’est pas divisible par p . Cette somme est reliée aux nombres de Bell qui apparaissent en combinatoire énumérative. Nous donnons une expression du n -ième nombre de Bell modulo p comme la trace de la puissance n -ième d’un élément fixe dans l’extension d’Artin-Schreier de degré p du corps premier à p éléments. Cette expression permet de démontrer la conjecture de Kurepa en la ramenant à un problème d’algèbre linéaire. ...

Séries hypergéométriques et irrationalité des valeurs de la fonction zêta de Riemann

Tanguy Rivoal (2003)

Journal de théorie des nombres de Bordeaux

Similarity:

Nous effectuons un survol des résultats connus sur la nature diophantienne des valeurs de la fonction zêta de Riemann aux entiers. Nous mettons en particulier l’accent sur le rôle important des séries hypergéométriques dans les démonstrations de l’irrationalité de ζ ( 2 ) , ζ ( 3 ) et d’une infinité des nombres ζ ( 2 n + 1 ) .