Page 1

Displaying 1 – 3 of 3

Showing per page

Block-based physical modeling with applications in musical acoustics

Rudolf Rabenstein, Stefan Petrausch (2008)

International Journal of Applied Mathematics and Computer Science

Block-based physical modeling is a methodology for modeling physical systems with different subsystems. Each subsystem may be modeled according to a different paradigm. Connecting systems of diverse nature in the discrete-time domain requires a unified interconnection strategy. Such a strategy is provided by the well-known wave digital principle, which had been introduced initially for the design of digital filters. It serves as a starting point for the more general idea of blockbased physical modeling,...

Time domain simulation of a piano. Part 1: model description

J. Chabassier, A. Chaigne, P. Joly (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The purpose of this study is the time domain modeling of a piano. We aim at explaining the vibratory and acoustical behavior of the piano, by taking into account the main elements that contribute to sound production. The soundboard is modeled as a bidimensional thick, orthotropic, heterogeneous, frequency dependent damped plate, using Reissner Mindlin equations. The vibroacoustics equations allow the soundboard to radiate into the surrounding air, in which we wish to compute the complete acoustical...

Currently displaying 1 – 3 of 3

Page 1