A continuum of totally incomparable hereditarily indecomposable Banach spaces
A family is constructed of cardinality equal to the continuum, whose members are totally incomparable hereditarily indecomposable Banach spaces.
A family is constructed of cardinality equal to the continuum, whose members are totally incomparable hereditarily indecomposable Banach spaces.
We analyze a natural function definable from a scale at a singular cardinal, and use it to obtain some strong negative square-brackets partition relations at successors of singular cardinals. The proof of our main result makes use of club-guessing, and as a corollary we obtain a fairly easy proof of a difficult result of Shelah connecting weak saturation of a certain club-guessing ideal with strong failures of square-brackets partition relations. We then investigate the strength of weak saturation...
The purpose of this article is to connect the notion of the amenability of a discrete group with a new form of structural Ramsey theory. The Ramsey-theoretic reformulation of amenability constitutes a considerable weakening of the Følner criterion. As a by-product, it will be shown that in any non-amenable group G, there is a subset E of G such that no finitely additive probability measure on G measures all translates of E equally. The analysis of discrete groups will be generalized to the setting...
Hong and Do[4] improved Mareš[7] result about additive decomposition of fuzzy quantities concerning an equivalence relation. But there still exists an open question which is the limitation to fuzzy quantities on R (the set of real numbers) with bounded supports in the presented theory. In this paper we restrict ourselves to fuzzy numbers, which are fuzzy quantities of the real line R with convex, normalized and upper semicontinuous membership function and prove this open question.