The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Motivated by an application to the unconditional basic sequence problem appearing in our previous paper, we introduce analogues of the Laver ideal on ℵ₂ living on index sets of the form and use this to refine the well-known high-dimensional polarized partition relation for of Shelah.
Let κ > ω be a regular cardinal and λ > κ a cardinal. The following partition property is shown to be consistent relative to a supercompact cardinal: For any with unbounded and 1 < γ < κ there is an unbounded Y ∪ X with for any n < ω.
We study several perfect set properties of the Baire space which follow from the Ramsey property . In particular we present some independence results which complete the picture of how these perfect set properties relate to each other.
We consider prediction problems in which each of a countably infinite set of agents tries to guess his own hat color based on the colors of the hats worn by the agents he can see, where who can see whom is specified by a graph V on ω. Our interest is in the case in which 𝓤 is an ultrafilter on the set of agents, and we seek conditions on 𝓤 and V ensuring the existence of a strategy such that the set of agents guessing correctly is of 𝓤-measure one. A natural necessary condition is the absence...
Currently displaying 1 –
4 of
4