Transitive ternary relations and quasiorderings
In this paper we consider the Aleksandrov equation f(L + x) = f(L) + f(x) where L is contained in Rn and f: L --> R and we describe the class of solutions bounded from below, with zeros and assuming on the boundary of the set of zeros only values multiple of a fixed a > 0. This class is the natural generalization of that described by Aleksandrov itself in the one-dimensional case.
For suitable topological spaces X and Y, given a continuous function f:X → Y and a point x ∈ X, one can determine the value of f(x) from the values of f on a deleted neighborhood of x by taking the limit of f. If f is not required to be continuous, it is impossible to determine f(x) from this information (provided |Y| ≥ 2), but as the author and Alan Taylor showed in 2009, there is nevertheless a means of guessing f(x), called the μ-predictor, that will be correct except on a small set; specifically,...
Assuming V = L, for every successor cardinal κ we construct a GCH and cardinal preserving forcing poset ℙ ∈ L such that in the ideal of all non-stationary subsets of κ is Δ₁-definable over H(κ⁺).
The concept of a -closed subset was introduced in [1] for an algebraic structure of type and a set of open formulas of the first order language . The set of all -closed subsets of forms a complete lattice whose properties were investigated in [1] and [2]. An algebraic structure is called - hamiltonian, if every non-empty -closed subset of is a class (block) of some congruence on ; is called - regular, if for every two , whenever they have a congruence class in common....