Some combinatorial problems, connected with product-isomorphisms of binary relations
If X is a compact metric space of dimension n, then K(X), the n- dimensional kernel of X, is the union of all n-dimensional Cantor manifolds in X. Aleksandrov raised the problem of what the descriptive complexity of K(X) could be. A straightforward analysis shows that if X is an n-dimensional complete separable metric space, then K(X) is a or PCA set. We show (a) there is an n-dimensional continuum X in for which K(X) is a complete set. In particular, ; K(X) is coanalytic but is not an analytic...
We prove the following theorems: There exists an -covering with the property . Under there exists such that is not an -covering or is not an -covering]. Also we characterize the property of being an -covering.
We develop a theory of sharp measure zero sets that parallels Borel’s strong measure zero, and prove a theorem analogous to Galvin–Mycielski–Solovay theorem, namely that a set of reals has sharp measure zero if and only if it is meager-additive. Some consequences: A subset of is meager-additive if and only if it is -additive; if is continuous and is meager-additive, then so is .