Cardinal arithmetic of general relational systems
An algebra is tolerance trivial if where is the lattice of all tolerances on . If contains a Mal’cev function compatible with each , then is tolerance trivial. We investigate finite algebras satisfying also the converse statement.
By an equivalence system is meant a couple where is a non-void set and is an equivalence on . A mapping of an equivalence system into is called a class preserving mapping if for each . We will characterize class preserving mappings by means of permutability of with the equivalence induced by .
Coalgebras for endofunctors can be used to model classes of object-oriented languages. However, binary methods do not fit directly into this approach. This paper proposes an extension of the coalgebraic framework, namely the use of extended polynomial functors . This extension allows the incorporation of binary methods into coalgebraic class specifications. The paper also discusses how to define bisimulation and invariants for coalgebras of extended polynomial functors and proves many standard...
Coalgebras for endofunctors can be used to model classes of object-oriented languages. However, binary methods do not fit directly into this approach. This paper proposes an extension of the coalgebraic framework, namely the use of extended polynomial functors. This extension allows the incorporation of binary methods into coalgebraic class specifications. The paper also discusses how to define bisimulation and invariants for coalgebras of extended polynomial functors and proves many...
We show that every function f: A × B → A × B, where |A| ≤ 3 and |B| < ω, can be represented as a composition f₁ ∘ f₂ ∘ f₃ ∘ f₄ of four axial functions, where f₁ is a vertical function. We also prove that for every finite set A of cardinality at least 3, there exist a finite set B and a function f: A × B → A × B such that f ≠ f₁ ∘ f₂ ∘ f₃ ∘ f₄ for any axial functions f₁, f₂, f₃, f₄, whenever f₁ is a horizontal function.
In this paper, we introduce six basic types of composition of ternary relations, four of which are associative. These compositions are based on two types of composition of a ternary relation with a binary relation recently introduced by Zedam et al. We study the properties of these compositions, in particular the link with the usual composition of binary relations through the use of the operations of projection and cylindrical extension.