m-existentially complete structures
Starting from a supercompact cardinal κ, we force and construct a model in which κ is both the least strongly compact and least supercompact cardinal and κ exhibits mixed levels of indestructibility. Specifically, κ 's strong compactness, but not its supercompactness, is indestructible under any κ -directed closed forcing which also adds a Cohen subset of κ. On the other hand, in this model, κ 's supercompactness is indestructible under any κ -directed closed forcing which does not add a Cohen subset...
We establish two new Easton theorems for the least supercompact cardinal that are consistent with the level by level equivalence between strong compactness and supercompactness. These theorems generalize Theorem 1 in our earlier paper [Math. Logic Quart. 51 (2005)]. In both our ground model and the model witnessing the conclusions of our present theorems, there are no restrictions on the structure of the class of supercompact cardinals.
Given an ideal on let () be minimum of the cardinalities of infinite (uncountable) maximal -almost disjoint subsets of . We show that if is a summable ideal; but for any tall density ideal including the density zero ideal . On the other hand, you have for any analytic -ideal , and for each density ideal . For each ideal on denote and the unbounding and dominating numbers of where iff . We show that and for each analytic -ideal . Given a Borel ideal on...
By results of [9] there are models and for which the Ehrenfeucht-Fraïssé game of length ω₁, , is non-determined, but it is consistent relative to the consistency of a measurable cardinal that no such models have cardinality ≤ ℵ₂. We now improve the work of [9] in two ways. Firstly, we prove that the consistency strength of the statement “CH and is determined for all models and of cardinality ℵ₂” is that of a weakly compact cardinal. On the other hand, we show that if , T is a countable complete...
A point x is a (bow) tie-point of a space X if X∖x can be partitioned into (relatively) clopen sets each with x in its closure. We denote this as where A, B are the closed sets which have a unique common accumulation point x. Tie-points have appeared in the construction of non-trivial autohomeomorphisms of βℕ = ℕ* (by Veličković and Shelah Steprans) and in the recent study (by Levy and Dow Techanie) of precisely 2-to-1 maps on ℕ*. In these cases the tie-points have been the unique fixed point...
We study polychromatic Ramsey theory with a focus on colourings of [ω 2]2. We show that in the absence of GCH there is a wide range of possibilities. In particular each of the following is consistent relative to the consistency of ZFC: (1) 2ω = ω 2 and for every α <ω 2; (2) 2ω = ω 2 and .
We introduce a very weak version of the square principle which may hold even under failure of the generalized continuum hypothesis. Under this weak square principle, we give a new characterization (Theorem 10) of partial orderings with κ-Freese-Nation property (see below for the definition). The characterization is not a ZFC theorem: assuming Chang’s Conjecture for , we can find a counter-example to the characterization (Theorem 12). We then show that, in the model obtained by adding Cohen reals,...
It is shown that in many forcing models there is no universal graph at the successors of regular cardinals. The proof, which is similar to the well-known proof for Cohen forcing, is extended to show that it is consistent to have no universal graph at the successor of a singular cardinal, and in particular at . Previously, little was known about universality at the successors of singulars. Analogous results show it is consistent not just that there is no single graph which embeds the rest, but that...
A model is presented in which the equivalence relation xCy iff L[x]=L[y] of equiconstructibility of reals does not admit a reasonable form of the Glimm-Effros theorem. The model is a kind of iterated Sacks generic extension of the constructible model, but with an “ill“founded “length” of the iteration. In another model of this type, we get an example of a non-Glimm-Effros equivalence relation on reals. As a more elementary application of the technique of “ill“founded Sacks iterations, we obtain...
We explore the possibility of forcing nonreflecting stationary sets of . We also present a generalization of Kanamori’s weakly normal filters, which induces stationary reflection.
We discuss the problem of whether there exists a restriction of the noncofinal ideal on that is normal.