Displaying 321 – 340 of 435

Showing per page

Riga p -point

Jaroslav Nešetřil (1977)

Commentationes Mathematicae Universitatis Carolinae

Rothberger gaps in fragmented ideals

Jörg Brendle, Diego Alejandro Mejía (2014)

Fundamenta Mathematicae

The Rothberger number (ℐ) of a definable ideal ℐ on ω is the least cardinal κ such that there exists a Rothberger gap of type (ω,κ) in the quotient algebra (ω)/ℐ. We investigate (ℐ) for a class of F σ ideals, the fragmented ideals, and prove that for some of these ideals, like the linear growth ideal, the Rothberger number is ℵ₁, while for others, like the polynomial growth ideal, it is above the additivity of measure. We also show that it is consistent that there are infinitely many (even continuum...

Rudin's Dowker space in the extension with a Suslin tree

Teruyuki Yorioka (2008)

Fundamenta Mathematicae

We introduce a generalization of a Dowker space constructed from a Suslin tree by Mary Ellen Rudin, and the rectangle refining property for forcing notions, which modifies the one for partitions due to Paul B. Larson and Stevo Todorčević and is stronger than the countable chain condition. It is proved that Martin's Axiom for forcing notions with the rectangle refining property implies that every generalized Rudin space constructed from Aronszajn trees is non-Dowker, and that the same can be forced...

Sandwiching the Consistency Strength of Two Global Choiceless Cardinal Patterns

Arthur W. Apter (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

We provide upper and lower bounds in consistency strength for the theories “ZF + ¬ A C ω + All successor cardinals except successors of uncountable limit cardinals are regular + Every uncountable limit cardinal is singular + The successor of every uncountable limit cardinal is singular of cofinality ω” and “ZF + ¬ A C ω + All successor cardinals except successors of uncountable limit cardinals are regular + Every uncountable limit cardinal is singular + The successor of every uncountable limit cardinal is singular...

Semiproper ideals

Hiroshi Sakai (2005)

Fundamenta Mathematicae

We say that an ideal I on κ λ is semiproper if the corresponding poset I is semiproper. In this paper we investigate properties of semiproper ideals on κ λ .

Sequential compactness vs. countable compactness

Angelo Bella, Peter Nyikos (2010)

Colloquium Mathematicae

The general question of when a countably compact topological space is sequentially compact, or has a nontrivial convergent sequence, is studied from the viewpoint of basic cardinal invariants and small uncountable cardinals. It is shown that the small uncountable cardinal 𝔥 is both the least cardinality and the least net weight of a countably compact space that is not sequentially compact, and that it is also the least hereditary Lindelöf degree in most published models. Similar results, some definitive,...

Sequential continuity on dyadic compacta and topological groups

Aleksander V. Arhangel'skii, Winfried Just, Grzegorz Plebanek (1996)

Commentationes Mathematicae Universitatis Carolinae

We study conditions under which sequentially continuous functions on topological spaces and sequentially continuous homomorphisms of topological groups are continuous.

Set-theoretic constructions of two-point sets

Ben Chad, Robin Knight, Rolf Suabedissen (2009)

Fundamenta Mathematicae

A two-point set is a subset of the plane which meets every line in exactly two points. By working in models of set theory other than ZFC, we demonstrate two new constructions of two-point sets. Our first construction shows that in ZFC + CH there exist two-point sets which are contained within the union of a countable collection of concentric circles. Our second construction shows that in certain models of ZF, we can show the existence of two-point sets without explicitly invoking the Axiom of Choice....

Seven characterizations of non-meager 𝖯-filters

Kenneth Kunen, Andrea Medini, Lyubomyr Zdomskyy (2015)

Fundamenta Mathematicae

We give several topological/combinatorial conditions that, for a filter on ω, are equivalent to being a non-meager -filter. In particular, we show that a filter is countable dense homogeneous if and only if it is a non-meager -filter. Here, we identify a filter with a subspace of 2 ω through characteristic functions. Along the way, we generalize to non-meager -filters a result of Miller (1984) about -points, and we employ and give a new proof of results of Marciszewski (1998). We also employ a theorem...

Singular cardinals and strong extenders

Arthur Apter, James Cummings, Joel Hamkins (2013)

Open Mathematics

We investigate the circumstances under which there exist a singular cardinal µ and a short (κ,µ)-extender E witnessing “κ is µ-strong”, such that µ is singular in Ult(V, E).

Singular Failures of GCH and Level by Level Equivalence

Arthur W. Apter (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

We construct a model for the level by level equivalence between strong compactness and supercompactness in which below the least supercompact cardinal κ, there is an unbounded set of singular cardinals which witness the only failures of GCH in the universe. In this model, the structure of the class of supercompact cardinals can be arbitrary.

Smooth graphs

Lajos Soukup (1999)

Commentationes Mathematicae Universitatis Carolinae

A graph G on ω 1 is called < ω -smooth if for each uncountable W ω 1 , G is isomorphic to G [ W W ' ] for some finite W ' W . We show that in various models of ZFC if a graph G is < ω -smooth, then G is necessarily trivial, i.eėither complete or empty. On the other hand, we prove that the existence of a non-trivial, < ω -smooth graph is also consistent with ZFC.

Some applications of Sargsyan's equiconsistency method

Arthur W. Apter (2012)

Fundamenta Mathematicae

We apply techniques due to Sargsyan to reduce the consistency strength of the assumptions used to establish an indestructibility theorem for supercompactness. We then show how these and additional techniques due to Sargsyan may be employed to establish an equiconsistency for a related indestructibility theorem for strongness.

Currently displaying 321 – 340 of 435