Loading [MathJax]/extensions/MathZoom.js
We investigate the question whether a system of homogeneous linear equations over is non-trivially solvable in provided that each subsystem with is non-trivially solvable in where is a fixed cardinal number such that . Among other results, we establish the following. (a) The answer is ‘No’ in the finite case (i.e., being finite). (b) The answer is ‘No’ in the denumerable case (i.e., and a natural number). (c) The answer in case that is uncountable and is ‘No relatively consistent...
We study the concept of -caliber as an alternative to the well known concept of caliber. -caliber and caliber values coincide for regular cardinals greater than or equal to the Souslin number of a space. Unlike caliber, -caliber may take on values below the Souslin number of a space. Under Martin’s axiom, is a -caliber of . Prikry’s poset is used to settle a problem by Fedeli regarding possible values of very weak caliber.
If there is no inner model with measurable cardinals, then for each cardinal there is an almost disjoint family of countable subsets of such that every subset of with order type contains an element of .
We list some open problems concerning the polarized partition relation. We solve a couple of them, by showing that for every limit non-inaccessible ordinal α there exists a forcing notion ℙ such that the strong polarized relation holds in .
We prove that the Fodor-type Reflection Principle (FRP) is equivalent to the assertion that any Boolean algebra is openly generated if and only if it is ℵ₂-projective. Previously it was known that this characterization of openly generated Boolean algebras follows from Axiom R. Since FRP is preserved by c.c.c. generic extension, we conclude in particular that this characterization is consistent with any set-theoretic assertion forcable by a c.c.c. poset starting from a model of FRP. A crucial step...
Let ω denote the set of natural numbers. We prove: for every mod-finite ascending chain of infinite subsets of ω, there exists , an infinite maximal almost disjoint family (MADF) of infinite subsets of the natural numbers, such that the Stone-Čech remainder βψ∖ψ of the associated ψ-space, ψ = ψ(ω,ℳ ), is homeomorphic to λ + 1 with the order topology. We also prove that for every λ < ⁺, where is the tower number, there exists a mod-finite ascending chain , hence a ψ-space with Stone-Čech remainder...
Currently displaying 61 –
71 of
71