Previous Page 10

Displaying 181 – 196 of 196

Showing per page

The splitting number can be smaller than the matrix chaos number

Heike Mildenberger, Saharon Shelah (2002)

Fundamenta Mathematicae

Let χ be the minimum cardinality of a subset of ω 2 that cannot be made convergent by multiplication with a single Toeplitz matrix. By an application of a creature forcing we show that < χ is consistent. We thus answer a question by Vojtáš. We give two kinds of models for the strict inequality. The first is the combination of an ℵ₂-iteration of some proper forcing with adding ℵ₁ random reals. The second kind of models is obtained by adding δ random reals to a model of M A < κ for some δ ∈ [ℵ₁,κ). It...

Totally proper forcing and the Moore-Mrówka problem

Todd Eisworth (2003)

Fundamenta Mathematicae

We describe a totally proper notion of forcing that can be used to shoot uncountable free sequences through certain countably compact non-compact spaces. This is almost (but not quite!) enough to produce a model of ZFC + CH in which countably tight compact spaces are sequential-we still do not know if the notion of forcing described in the paper can be iterated without adding reals.

Universal functions

Paul B. Larson, Arnold W. Miller, Juris Steprāns, William A. R. Weiss (2014)

Fundamenta Mathematicae

A function of two variables F(x,y) is universal if for every function G(x,y) there exist functions h(x) and k(y) such that G(x,y) = F(h(x),k(y)) for all x,y. Sierpiński showed that assuming the Continuum Hypothesis there exists a Borel function F(x,y) which is universal. Assuming Martin's Axiom there is a universal function of Baire class 2. A universal function cannot be of Baire class 1. Here we show that it is consistent that for each α with 2 ≤ α < ω₁ there...

Very small sets

Haim Judah, Amiran Lior, Ireneusz Recław (1997)

Colloquium Mathematicae

Weak variants of Martin's Axiom

J. Barnett (1992)

Fundamenta Mathematicae

Examples exist of smooth maps on the boundary of a smooth manifold M which allow continuous extensions over M without fixed points but no such smooth extensions. Such maps are studied here in more detail. They have a minimal fixed point set when all transversally fixed maps in their homotopy class are considered. Therefore we introduce a Nielsen fixed point theory for transversally fixed maps on smooth manifolds without or with boundary, and use it to calculate the minimum number of fixed points...

Currently displaying 181 – 196 of 196

Previous Page 10