Sacks reals and Martin's axiom
A two-point set is a subset of the plane which meets every line in exactly two points. By working in models of set theory other than ZFC, we demonstrate two new constructions of two-point sets. Our first construction shows that in ZFC + CH there exist two-point sets which are contained within the union of a countable collection of concentric circles. Our second construction shows that in certain models of ZF, we can show the existence of two-point sets without explicitly invoking the Axiom of Choice....
The old game is the point-open one discovered independently by F. Galvin [7] and R. Telgársky [17]. Recall that it is played on a topological space as follows: at the -th move the first player picks a point and the second responds with choosing an open . The game stops after moves and the first player wins if . Otherwise the victory is ascribed to the second player. In this paper we introduce and study the games and . In the moves are made exactly as in the point-open game, but the...
The relations M(κ,λ,μ) → B [resp. B(σ)] meaning that if with |A|=κ is μ-almost disjoint then A has property B [resp. has a σ-transversal] had been introduced and studied under GCH in [EH]. Our two main results here say the following: Assume GCH and let ϱ be any regular cardinal with a supercompact [resp. 2-huge] cardinal above ϱ. Then there is a ϱ-closed forcing P such that, in , we have both GCH and [resp. for all . These show that, consistently, the results of [EH] are sharp. The necessity...
Assuming the continuum hypothesis, we construct a pure subgroup G of the Baer-Specker group with the following properties. Every endomorphism of G differs from a scalar multiplication by an endomorphism of finite rank. Yet G has uncountably many homomorphisms to ℤ.
Let κ < λ be regular cardinals. We say that an embedding j: V → M with critical point κ is λ-tall if λ < j(κ) and M is closed under κ-sequences in V. Silver showed that GCH can fail at a measurable cardinal κ, starting with κ being κ⁺⁺-supercompact. Later, Woodin improved this result, starting from the optimal hypothesis of a κ⁺⁺-tall measurable cardinal κ. Now more generally, suppose that κ ≤ λ are regular and one wishes the GCH to fail at λ with κ being λ-supercompact. Silver’s methods show...