Some Remarks on Tall Cardinals and Failures of GCH
We investigate two global GCH patterns which are consistent with the existence of a tall cardinal, and also present some related open questions.
We investigate two global GCH patterns which are consistent with the existence of a tall cardinal, and also present some related open questions.
Suppose κ is a supercompact cardinal and λ≥κ. In [3], we studied the relationship between the weak partition property and the partition property for normal ultrafilters on . In this paper we study a hierarchy of properties intermediate between the weak partition property and the partition property. Given appropriate large cardinal assumptions, we show that these properties are not all equivalent.
We study some limitations and possible occurrences of uniform ultrafilters on ordinals without the axiom of choice. We prove an Easton-like theorem about the possible spectrum of successors of regular cardinals which carry uniform ultrafilters; we also show that this spectrum is not necessarily closed.
For a regular uncountable cardinal κ and a cardinal λ with cf(λ) < κ < λ, we investigate the consistency strength of the existence of a stationary set in which cannot be split into λ⁺ many pairwise disjoint stationary subsets. To do this, we introduce a new notion for ideals, which is a variation of normality of ideals. We also prove that there is a stationary set S in such that every stationary subset of S can be split into λ⁺ many pairwise disjoint stationary subsets.
We force and construct a model in which level by level equivalence between strong compactness and supercompactness holds, along with certain additional “inner model like” properties. In particular, in this model, the class of Mahlo cardinals reflecting stationary sets is the same as the class of weakly compact cardinals, and every regular Jónsson cardinal is weakly compact. On the other hand, we force and construct a model for the level by level equivalence between strong compactness and supercompactness...
Working in L[E], we examine which large cardinal properties of κ imply that all stationary subsets of cof(<κ) ∩ κ⁺ reflect.
We prove two theorems concerning strong compactness, measurability, and the class of supercompact cardinals. We begin by showing, relative to the appropriate hypotheses, that it is consistent non-trivially for every supercompact cardinal to be the limit of (non-supercompact) strongly compact cardinals. We then show, relative to the existence of a non-trivial (proper or improper) class of supercompact cardinals, that it is possible to have a model with the same class of supercompact cardinals in...
In §1 we define some properties of ideals by using games. These properties strengthen precipitousness. We call these stronger ideals. In §2 we show some limitations on the existence of such ideals over . We also present a consistency result concerning the existence of such ideals over . In §3 we show that such ideals satisfy stronger normality. We show a cardinal arithmetical consequence of the existence of strongly normal ideals. In § 4 we study some “large cardinal-like” consequences of stronger...
The relations M(κ,λ,μ) → B [resp. B(σ)] meaning that if with |A|=κ is μ-almost disjoint then A has property B [resp. has a σ-transversal] had been introduced and studied under GCH in [EH]. Our two main results here say the following: Assume GCH and let ϱ be any regular cardinal with a supercompact [resp. 2-huge] cardinal above ϱ. Then there is a ϱ-closed forcing P such that, in , we have both GCH and [resp. for all . These show that, consistently, the results of [EH] are sharp. The necessity...
Let κ < λ be regular cardinals. We say that an embedding j: V → M with critical point κ is λ-tall if λ < j(κ) and M is closed under κ-sequences in V. Silver showed that GCH can fail at a measurable cardinal κ, starting with κ being κ⁺⁺-supercompact. Later, Woodin improved this result, starting from the optimal hypothesis of a κ⁺⁺-tall measurable cardinal κ. Now more generally, suppose that κ ≤ λ are regular and one wishes the GCH to fail at λ with κ being λ-supercompact. Silver’s methods show...
We force and construct a model containing supercompact cardinals in which, for any measurable cardinal δ and any ordinal α below the least beth fixed point above δ, if is regular, δ is strongly compact iff δ is δ + α + 1 strong, except possibly if δ is a limit of cardinals γ which are strongly compact. The choice of the least beth fixed point above δ as our bound on α is arbitrary, and other bounds are possible.
We are interested in generalizing part of the theory of ultrafilters on ω to larger cardinals. Here we set the scene for further investigations introducing properties of ultrafilters in strong sense dual to being normal.
The Main Theorem is the equiconsistency of the following two statements: (1) κ is a measurable cardinal and the tree property holds at κ⁺⁺; (2) κ is a weakly compact hypermeasurable cardinal. From the proof of the Main Theorem, two internal consistency results follow: If there is a weakly compact hypermeasurable cardinal and a measurable cardinal far enough above it, then there is an inner model in which there is a proper class of measurable cardinals, and in which the tree property holds at the...