Displaying 121 – 140 of 376

Showing per page

Fundamentals of a mathematical theory of fuzzy sets

Jindřich Spal (1982)

Aplikace matematiky

Fuzzy sets establish a mapping from the interval of values of a criterial function onto a system of subsets of a basic set. In the paper, a system of definitions and theorems is introduced, which is aimed at an adequate expression of this point of view. The criterial function, with an arbitrary interval of values, serves for expressing the really existing objective property, forming the basis for defining a fuzzy set.

Fuzzy clustering of fuzzy data considering the shape of the membership functions using a novel representation learning technique

Alireza Khastan, Elham Eskandari (2025)

Kybernetika

Most existing distance measures for fuzzy data do not capture differences in the shapes of the left and right tails of membership functions. As a result, they may calculate a distance of zero between fuzzy data even when these differences exist. Additionally, some distance measures cannot compute distances between fuzzy data when their membership functions differ in type. In this paper, inspired by human visual perception, we propose a fuzzy clustering method for fuzzy data using a novel representation...

Fuzzy data in statistics

Milan Mareš (2007)

Kybernetika

The development of effective methods of data processing belongs to important challenges of modern applied mathematics and theoretical information science. If the natural uncertainty of the data means their vagueness, then the theory of fuzzy quantities offers relatively strong tools for their treatment. These tools differ from the statistical methods and this difference is not only justifiable but also admissible. This relatively brief paper aims to summarize the main fuzzy approaches to vague data...

Fuzzy distances

Josef Bednář (2005)

Kybernetika

In the paper, three different ways of constructing distances between vaguely described objects are shown: a generalization of the classic distance between subsets of a metric space, distance between membership functions of fuzzy sets and a fuzzy metric introduced by generalizing a metric space to fuzzy-metric one. Fuzzy metric spaces defined by Zadeh’s extension principle, particularly to n are dealt with in detail.

Fuzzy equality and convergences for F -observables in F -quantum spaces

Ferdinand Chovanec, František Kôpka (1991)

Applications of Mathematics

We introduce a fuzzy equality for F -observables on an F -quantum space which enables us to characterize different kinds of convergences, and to represent them by pointwise functions on an appropriate measurable space.

Fuzzy Markov chains: uncertain probabilities.

James J. Buckley, Esfandiar Eslami (2002)

Mathware and Soft Computing

We consider finite Markov chains where there are uncertainties in some of the transition probabilities. These uncertainties are modeled by fuzzy numbers. Using a restricted fuzzy matrix multiplication we investigate the properties of regular, and absorbing, fuzzy Markov chains and show that the basic properties of these classical Markov chains generalize to fuzzy Markov chains.

Fuzzy numbers, definitions and properties.

Miguel Delgado, José Luis Verdegay, M. Amparo Vila (1994)

Mathware and Soft Computing

Two different definitions of a Fuzzy number may be found in the literature. Both fulfill Goguen's Fuzzification Principle but are different in nature because of their different starting points.The first one was introduced by Zadeh and has well suited arithmetic and algebraic properties. The second one, introduced by Gantner, Steinlage and Warren, is a good and formal representation of the concept from a topological point of view.The objective of this paper is to analyze these definitions and discuss...

Fuzzy orness measure and new orness axioms

LeSheng Jin, Martin Kalina, Gang Qian (2015)

Kybernetika

We have modified the axiomatic system of orness measures, originally introduced by Kishor in 2014, keeping altogether four axioms. By proposing a fuzzy orness measure based on the inner product of lattice operations, we compare our orness measure with Yager's one which is based on the inner product of arithmetic operations. We prove that fuzzy orness measure satisfies the newly proposed four axioms and propose a method to determine OWA operator with given fuzzy orness degree.

Currently displaying 121 – 140 of 376