Page 1

Displaying 1 – 7 of 7

Showing per page

Nearness relations in linear spaces

Martin Kalina (2004)

Kybernetika

In this paper, we consider nearness-based convergence in a linear space, where the coordinatewise given nearness relations are aggregated using weighted pseudo-arithmetic and geometric means and using continuous t-norms.

Negaciones en la teoría de conjuntos difusos.

Francesc Esteva (1981)

Stochastica

All the negations of PL(X) satisfying the extension principle and the generalized extension principle are fully described through the negation of L. Necessary and sufficient conditions are given for n to be an ortho or u-complementation and for n to satisfy the DeMorgan laws.

New kinds of hybrid filters of EQ-algebras

Akbar Paad (2024)

Mathematica Bohemica

The main goal of this paper is to introduce hybrid positive implicative and hybrid implicative (pre)filters of EQ-algebras. In the following, some characterizations of this hybrid (pre)filters are investigated and it is proved that the quotient algebras induced by hybrid positive implicative filters in residuated EQ-algebras are idempotent and residuated EQ-algebra. Moreover, the relationship between hybrid implicative prefilters and hybrid positive implicative prefilters are discussed and it is...

Nonparametric recursive aggregation process

Elena Tsiporkova, Veselka Boeva (2004)

Kybernetika

In this work we introduce a nonparametric recursive aggregation process called Multilayer Aggregation (MLA). The name refers to the fact that at each step the results from the previous one are aggregated and thus, before the final result is derived, the initial values are subjected to several layers of aggregation. Most of the conventional aggregation operators, as for instance weighted mean, combine numerical values according to a vector of weights (parameters). Alternatively, the MLA operators...

Note on "construction of uninorms on bounded lattices"

Xiu-Juan Hua, Hua-Peng Zhang, Yao Ouyang (2021)

Kybernetika

In this note, we point out that Theorem 3.1 as well as Theorem 3.5 in G. D. Çaylı and F. Karaçal (Kybernetika 53 (2017), 394-417) contains a superfluous condition. We have also generalized them by using closure (interior, resp.) operators.

Notes on locally internal uninorm on bounded lattices

Gül Deniz Çaylı, Ümit Ertuğrul, Tuncay Köroğlu, Funda Karaçal (2017)

Kybernetika

In the study, we introduce the definition of a locally internal uninorm on an arbitrary bounded lattice L . We examine some properties of an idempotent and locally internal uninorm on an arbitrary bounded latice L , and investigate relationship between these operators. Moreover, some illustrative examples are added to show the connection between idempotent and locally internal uninorm.

Currently displaying 1 – 7 of 7

Page 1