The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 1 of 1

Showing per page

Lower and upper bounds for the provability of Herbrand consistency in weak arithmetics

Zofia Adamowicz, Konrad Zdanowski (2011)

Fundamenta Mathematicae

We prove that for i ≥ 1, the arithmetic I Δ + Ω i does not prove a variant of its own Herbrand consistency restricted to the terms of depth in ( 1 + ε ) l o g i + 2 , where ε is an arbitrarily small constant greater than zero. On the other hand, the provability holds for the set of terms of depths in l o g i + 3 .

Currently displaying 1 – 1 of 1

Page 1