Commutative Partially Ordered Recursive Arithmetics.
We use ideas and machinery of effective algebra to investigate computable structures on the space C[0,1] of continuous functions on the unit interval. We show that (C[0,1],sup) has infinitely many computable structures non-equivalent up to a computable isometry. We also investigate if the usual operations on C[0,1] are necessarily computable in every computable structure on C[0,1]. Among other results, we show that there is a computable structure on C[0,1] which computes + and the scalar multiplication,...
Corrección del artículo del autor "Anàlisi formalment recursiva", publicado en Publicacions de la Secció de Matemàtiques de la UAB, 30 (2-3), p. 35-75 (1986).