Regularly full logics and the uniqueness problem for observables
In this paper, the authors introduce the notion of conditional expectation of an observable on a logic with respect to a sublogic, in a state , relative to an element of the logic. This conditional expectation is an analogue of the expectation of an integrable function on a probability space.
In this paper we carry on the investigation of partially additive states on quantum logics (see [2], [5], [7], [8], [11], [12], [15], [18], etc.). We study a variant of weak states — the states which are additive with respect to a given Boolean subalgebra. In the first result we show that there are many quantum logics which do not possess any 2-additive central states (any logic possesses an abundance of 1-additive central state — see [12]). In the second result we construct a finite 3-homogeneous...
Ring-like quantum structures generalizing Boolean rings and having the property that the terms corresponding to the two normal forms of the symmetric difference in Boolean algebras coincide are investigated. Subclasses of these structures are algebraically characterized and related to quantum logic. In particular, a physical interpretation of the proposed model following Mackey's approach to axiomatic quantum mechanics is given.