A characterization of quantic quantifiers in orthomodular lattices.
Page 1 Next
Román, Leopoldo (2006)
Theory and Applications of Categories [electronic only]
Jiří Binder (1988)
Mathematica Slovaca
Le Ba Long (1992)
Applications of Mathematics
We give a representation of an observable on a fuzzy quantum poset of type II by a pointwise defined real-valued function. This method is inspired by that of Kolesárová [6] and Mesiar [7], and our results extend representations given by the author and Dvurečenskij [4]. Moreover, we show that in this model, the converse representation fails, in general.
Josef Tkadlec (1989)
Mathematica Slovaca
Mukherjee, M.K. (1979)
Portugaliae mathematica
Sylvia Pulmannová (1981)
Mathematica Slovaca
Palko, V. (1995)
Acta Mathematica Universitatis Comenianae. New Series
Jiří Binder (1989)
Časopis pro pěstování matematiky
Vladimír Rogalewicz (1989)
Aplikace matematiky
A finite orthomodular lattice in which every maximal Boolean subalgebra (block) has the same cardinality is called -regular, if each atom is a member of just blocks. We estimate the minimal number of blocks of -regular orthomodular lattices to be lower than of equal to regardless of .
Jiří Binder, Pavel Pták (1990)
Acta Universitatis Carolinae. Mathematica et Physica
Sylvia Pulmannová (2005)
Kybernetika
MV-algebras were introduced by Chang, 1958 as algebraic bases for multi-valued logic. MV stands for “multi-valued" and MV algebras have already occupied an important place in the realm of nonstandard (mathematical) logic applied in several fields including cybernetics. In the present paper, using the Loomis–Sikorski theorem for -MV-algebras, we prove that, with every element in a -MV algebra , a spectral measure (i. e. an observable) can be associated, where denotes the Boolean -algebra...
M. C. Abbati, A. Manià (1981)
Annales de l'I.H.P. Physique théorique
Jan Paseka, Zdena Riečanová, Junde Wu (2010)
Kybernetika
We prove that the interval topology of an Archimedean atomic lattice effect algebra is Hausdorff whenever the set of all atoms of is almost orthogonal. In such a case is order continuous. If moreover is complete then order convergence of nets of elements of is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on corresponding to compact and cocompact elements....
Vladimír Olejček (2007)
Kybernetika
Does there exist an atomic lattice effect algebra with non-atomic subalgebra of sharp elements? An affirmative answer to this question (and slightly more) is given: An example of an atomic MV-effect algebra with a non-atomic Boolean subalgebra of sharp or central elements is presented.
Wawrzyniec Guz (1979)
Annales de l'I.H.P. Physique théorique
Mirko Navara (1992)
Commentationes Mathematicae Universitatis Carolinae
Vladimír Rogalewicz (1988)
Commentationes Mathematicae Universitatis Carolinae
Zdena Riečanová (2006)
Kybernetika
We prove that every Archimedean atomic lattice effect algebra the center of which coincides with the set of all sharp elements is isomorphic to a subdirect product of horizontal sums of finite chains, and conversely. We show that every such effect algebra can be densely embedded into a complete effect algebra (its MacNeille completion) and that there exists an order continuous state on it.
Riečanová, Zdenka (2010)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Foulis, David J. (2003)
International Journal of Mathematics and Mathematical Sciences
Page 1 Next