Characterization of a full set of probabilities on some posets.
An equivalent definition of compatibility in pseudo-effect algebras is given, and its relationships with central elements are investigated. Furthermore, pseudo-MV-algebras are characterized among pseudo-effect algebras by means of compatibility.
We present three results stating when a concrete (=set-representable) quantum logic with covering properties (generalization of compatibility) has to be a Boolean algebra. These results complete and generalize some previous results [3, 5] and answer partiallz a question posed in [2].
Effect basic algebras (which correspond to lattice ordered effect algebras) are studied. Their ideals are characterized (in the language of basic algebras) and one-to-one correspondence between ideals and congruences is shown. Conditions under which the quotients are OMLs or MV-algebras are found.
Given a real separable Hilbert space H, we denote with S = {E(n) | n belongs to N} a sequence of closed linear subspaces of H.In previous papers, the strong, weak, a--> and b--> convergences are defined and characterized. Now, given a sequence S with strong, weak, a--> or b--> limit, and a linear operator of H, A, the sequence AS is studied.
A degree of probabilistic dependence is introduced in the classical logic using the Frank family of -norms known from fuzzy logics. In the quantum logic a degree of quantum dependence is added corresponding to the level of noncompatibility. Further, in the case of the fuzzy logic with -states, (resp. -states) the consideration turned out to be fully analogous to (resp. considerably different from) the classical situation.