A normalization formula for the Jack polynomials in superspace and an identity on partitions.
For any positive integer k and any set A of nonnegative integers, let denote the number of solutions (a₁,a₂) of the equation n = a₁ + ka₂ with a₁,a₂ ∈ A. Let k,l ≥ 2 be two distinct integers. We prove that there exists a set A ⊆ ℕ such that both and hold for all n ≥ n₀ if and only if log k/log l = a/b for some odd positive integers a,b, disproving a conjecture of Yang. We also show that for any set A ⊆ ℕ satisfying for all n ≥ n₀, we have as n → ∞.
The nth-order determinant of a Toeplitz-Hessenberg matrix is expressed as a sum over the integer partitions of n. Many combinatorial identities involving integer partitions and multinomial coefficients can be generated using this formula.
Let be a non-empty subset of positive integers. A partition of a positive integer into is a finite nondecreasing sequence of positive integers in with repetitions allowed such that . Here we apply Pólya’s enumeration theorem to find the number of partitions of into , and the number of distinct partitions of into . We also present recursive formulas for computing and .