A bijection between 3-Motzkin paths and Schröder paths with no peak at odd.
Many links exist between ordinary partitions and partitions with parts in the “gaps”. In this paper, we explore combinatorial explanations for some of these links, along with some natural generalizations. In particular, if we let be the number of partitions of n into j parts where each part is ≡ k (mod m), 1 ≤ k ≤ m, and we let be the number of partitions of n into j parts where each part is ≡ k (mod m) with parts of size k in the gaps, then .