Identitäten bei den Stirling-Zahlen 2.Art aus kombinatorischen Überlegungen beim Würfelspiel.
Here we will derive formulas for expressing any polynomial as linear combinations of two kinds of higherorder Daehee polynomial basis. Then we will apply these formulas to certain polynomials in order to get new and interesting identities involving higher-order Daehee polynomials of the first kind and of the second kind.
In this paper, we give an integral representation for the boundary values of derivatives of functions of the de Branges–Rovnyak spaces , where is in the unit ball of . In particular, we generalize a result of Ahern–Clark obtained for functions of the model spaces , where is an inner function. Using hypergeometric series, we obtain a nontrivial formula of combinatorics for sums of binomial coefficients. Then we apply this formula to show the norm convergence of reproducing kernel of evaluation...
Integrals of logarithmic and hypergeometric functions are intrinsically connected with Euler sums. In this paper we explore many relations and explicitly derive closed form representations of integrals of logarithmic, hypergeometric functions and the Lerch phi transcendent in terms of zeta functions and sums of alternating harmonic numbers.
A pair of simple bivariate inverse series relations are used by embedding machinery to produce several double summation formulae on shifted factorials (or binomial coefficients), including the evaluation due to Blodgett-Gessel. Their q-analogues are established in the second section. Some generalized convolutions are presented through formal power series manipulation.