Displaying 81 – 100 of 189

Showing per page

On sets of vectors of a finite vector space in which every subset of basis size is a basis

Simeon Ball (2012)

Journal of the European Mathematical Society

It is shown that the maximum size of a set S of vectors of a k -dimensional vector space over 𝔽 q , with the property that every subset of size k is a basis, is at most q + 1 , if k p , and at most q + k p , if q k p + 1 4 , where q = p k and p is prime. Moreover, for k p , the sets S of maximum size are classified, generalising Beniamino Segre’s “arc is a conic” theorem. These results have various implications. One such implication is that a k × ( p + 2 ) matrix, with k p and entries from 𝔽 p , has k columns which are linearly dependent. Another is...

On small distances of small 2-groups

Natalia Zhukavets (2001)

Commentationes Mathematicae Universitatis Carolinae

The paper reports the results of a search for pairs of groups of order n that can be placed in the distance n 2 / 4 for the case when n { 16 , 32 } . The constructions that are used are of the general character and some of their properties are discussed as well.

On some Generalizations of a Class of Discrete Functions

Kovachev, Dimiter (2008)

Serdica Journal of Computing

In this paper we examine discrete functions that depend on their variables in a particular way, namely the H-functions. The results obtained in this work make the “construction” of these functions possible. H-functions are generalized, as well as their matrix representation by Latin hypercubes.

On strongly sum-free subsets of abelian groups

Tomasz Łuczak, Tomasz Schoen (1996)

Colloquium Mathematicae

In his book on unsolved problems in number theory [1] R. K. Guy asks whether for every natural l there exists n 0 = n 0 ( l ) with the following property: for every n n 0 and any n elements a 1 , . . . , a n of a group such that the product of any two of them is different from the unit element of the group, there exist l of the a i such that a i j a i k a m for 1 j < k l and 1 m n . In this note we answer this question in the affirmative in the first non-trivial case when l=3 and the group is abelian, proving the following result.

Currently displaying 81 – 100 of 189