Page 1 Next

Displaying 1 – 20 of 90

Showing per page

Secret sharing schemes for ports of matroids of rank 3

Oriol Farràs (2020)

Kybernetika

A secret sharing scheme is ideal if the size of each share is equal to the size of the secret. Brickell and Davenport showed that the access structure of an ideal secret sharing scheme is determined by a matroid. Namely, the minimal authorized subsets of an ideal secret sharing scheme are in correspondence with the circuits of a matroid containing a fixed point. In this case, we say that the access structure is a matroid port. It is known that, for an access structure, being a matroid port is not...

Shape tiling.

Keating, Kevin, King, Jonathan L. (1997)

The Electronic Journal of Combinatorics [electronic only]

Signatura of magic and Latin integer squares: isentropic clans and indexing

Ian Cameron, Adam Rogers, Peter D. Loly (2013)

Discussiones Mathematicae Probability and Statistics

The 2010 study of the Shannon entropy of order nine Sudoku and Latin square matrices by Newton and DeSalvo [Proc. Roy. Soc. A 2010] is extended to natural magic and Latin squares up to order nine. We demonstrate that decimal and integer measures of the Singular Value sets, here named SV clans, are a powerful way of comparing different integer squares. Several complete sets of magic and Latin squares are included, including the order eight Franklin subset which is of direct relevance...

Currently displaying 1 – 20 of 90

Page 1 Next