Previous Page 2

Displaying 21 – 31 of 31

Showing per page

A Ramsey-style extension of a theorem of Erdős and Hajnal

Peter Komjáth (2001)

Fundamenta Mathematicae

If n, t are natural numbers, μ is an infinite cardinal, G is an n-chromatic graph of cardinality at most μ, then there is a graph X with X ( G ) ¹ μ , |X| = μ⁺, such that every subgraph of X of cardinality < t is n-colorable.

A strongly non-Ramsey uncountable graph

Péter Komjáth (1997)

Fundamenta Mathematicae

It is consistent that there exists a graph X of cardinality 1 such that every graph has an edge coloring with 1 colors in which the induced copies of X (if there are any) are totally multicolored (get all possible colors).

Amenability and Ramsey theory

Justin Tatch Moore (2013)

Fundamenta Mathematicae

The purpose of this article is to connect the notion of the amenability of a discrete group with a new form of structural Ramsey theory. The Ramsey-theoretic reformulation of amenability constitutes a considerable weakening of the Følner criterion. As a by-product, it will be shown that in any non-amenable group G, there is a subset E of G such that no finitely additive probability measure on G measures all translates of E equally. The analysis of discrete groups will be generalized to the setting...

Amenability and Ramsey theory in the metric setting

Adriane Kaïchouh (2015)

Fundamenta Mathematicae

Moore [Fund. Math. 220 (2013)] characterizes the amenability of the automorphism groups of countable ultrahomogeneous structures by a Ramsey-type property. We extend this result to the automorphism groups of metric Fraïssé structures, which encompass all Polish groups. As an application, we prove that amenability is a G δ condition.

Currently displaying 21 – 31 of 31

Previous Page 2