Page 1

Displaying 1 – 12 of 12

Showing per page

Ramsey partitions and proximity data structures

Manor Mendel, Assaf Naor (2007)

Journal of the European Mathematical Society

This paper addresses two problems lying at the intersection of geometric analysis and theoretical computer science: The non-linear isomorphic Dvoretzky theorem and the design of good approximate distance oracles for large distortion.We introduce the notion of Ramsey partitions of a finite metric space, and show that the existence of good Ramsey partitions implies a solution to the metric Ramsey problem for large distortion (also known as the non-linear version of the isomorphic Dvoretzky theorem,...

Ramseyan ultrafilters

Lorenz Halbeisen (2001)

Fundamenta Mathematicae

We investigate families of partitions of ω which are related to special coideals, so-called happy families, and give a dual form of Ramsey ultrafilters in terms of partitions. The combinatorial properties of these partition-ultrafilters, which we call Ramseyan ultrafilters, are similar to those of Ramsey ultrafilters. For example it will be shown that dual Mathias forcing restricted to a Ramseyan ultrafilter has the same features as Mathias forcing restricted to a Ramsey ultrafilter. Further we...

Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces

Jiří Matoušek (1992)

Commentationes Mathematicae Universitatis Carolinae

Let ( X , ρ ) , ( Y , σ ) be metric spaces and f : X Y an injective mapping. We put f L i p = sup { σ ( f ( x ) , f ( y ) ) / ρ ( x , y ) ; x , y X , x y } , and dist ( f ) = f L i p . f - 1 L i p (the distortion of the mapping f ). Some Ramsey-type questions for mappings of finite metric spaces with bounded distortion are studied; e.g., the following theorem is proved: Let X be a finite metric space, and let ε > 0 , K be given numbers. Then there exists a finite metric space Y , such that for every mapping f : Y Z ( Z arbitrary metric space) with dist ( f ) < K one can find a mapping g : X Y , such that both the mappings g and f | g ( X ) have distortion at...

Regular methods of summability in some locally convex spaces

Costas Poulios (2009)

Commentationes Mathematicae Universitatis Carolinae

Suppose that X is a Fréchet space, a i j is a regular method of summability and ( x i ) is a bounded sequence in X . We prove that there exists a subsequence ( y i ) of ( x i ) such that: either (a) all the subsequences of ( y i ) are summable to a common limit with respect to a i j ; or (b) no subsequence of ( y i ) is summable with respect to a i j . This result generalizes the Erdös-Magidor theorem which refers to summability of bounded sequences in Banach spaces. We also show that two analogous results for some ω 1 -locally convex spaces...

Relational quotients

Miodrag Sokić (2013)

Fundamenta Mathematicae

Let 𝒦 be a class of finite relational structures. We define ℰ𝒦 to be the class of finite relational structures A such that A/E ∈ 𝒦, where E is an equivalence relation defined on the structure A. Adding arbitrary linear orderings to structures from ℰ𝒦, we get the class 𝒪ℰ𝒦. If we add linear orderings to structures from ℰ𝒦 such that each E-equivalence class is an interval then we get the class 𝒞ℰ[𝒦*]. We provide a list of Fraïssé classes among ℰ𝒦, 𝒪ℰ𝒦 and 𝒞ℰ[𝒦*]. In addition, we classify...

Currently displaying 1 – 12 of 12

Page 1