Page 1

Displaying 1 – 6 of 6

Showing per page

Parallelepipeds, nilpotent groups and Gowers norms

Bernard Host, Bryna Kra (2008)

Bulletin de la Société Mathématique de France

In his proof of Szemerédi’s Theorem, Gowers introduced certain norms that are defined on a parallelepiped structure. A natural question is on which sets a parallelepiped structure (and thus a Gowers norm) can be defined. We focus on dimensions 2 and 3 and show when this possible, and describe a correspondence between the parallelepiped structures and nilpotent groups.

Partial unconditionality of weakly null sequences.

Jordi López Abad, Stevo Todorcevic (2006)

RACSAM

We survey a combinatorial framework for studying subsequences of a given sequence in a Banach space, with particular emphasis on weakly-null sequences. We base our presentation on the crucial notion of barrier introduced long time ago by Nash-Williams. In fact, one of the purposes of this survey is to isolate the importance of studying mappings defined on barriers as a crucial step towards solving a given problem that involves sequences in Banach spaces. We focus our study on various forms of ?partial...

Planar Ramsey numbers

Izolda Gorgol (2005)

Discussiones Mathematicae Graph Theory

The planar Ramsey number PR(G,H) is defined as the smallest integer n for which any 2-colouring of edges of Kₙ with red and blue, where red edges induce a planar graph, leads to either a red copy of G, or a blue H. In this note we study the weak induced version of the planar Ramsey number in the case when the second graph is complete.

Currently displaying 1 – 6 of 6

Page 1