Combinatorial necklace splitting.
We use Ramseyan partition relations to characterize: ∙ the classical covering property of Hurewicz; ∙ the covering property of Gerlits and Nagy; ∙ the combinatorial cardinal numbers and add(ℳ ). Let X be a -space. In [9] we showed that has countable strong fan tightness as well as the Reznichenko property if, and only if, all finite powers of X have the Gerlits-Nagy covering property. Now we show that the following are equivalent: 1. has countable fan tightness and the Reznichenko property. 2....
We give combinatorial characterizations of IP rich sets (IP sets that remain IP upon removal of any set of zero upper Banach density) and D sets (members of idempotent ultrafilters, all of whose members have positive upper Banach density) in ℤ. We then show that the family of IP rich sets strictly contains the family of D sets.
In this paper, we consider a possible representation of a DNA sequence in a quaternary tree, in which one can visualize repetitions of subwords (seen as suffixes of subsequences). The CGR-tree turns a sequence of letters into a Digital Search Tree (DST), obtained from the suffixes of the reversed sequence. Several results are known concerning the height, the insertion depth for DST built from independent successive random sequences having the same distribution. Here the successive inserted words...
Inspired by probabilistic number theory, we establish necessary and sufficient conditions under which the numbers of cycles with lengths in arbitrary sets posses an asymptotic limit law. The approach can be extended to deal with the counts of components with the size constraints for other random combinatorial structures.
We investigate the following three questions: Let n ∈ ℕ. For which Hausdorff spaces X is it true that whenever Γ is an arbitrary (respectively finite-to-one, respectively injective) function from ℕⁿ to X, there must exist an infinite subset M of ℕ such that Γ[Mⁿ] is discrete? Of course, if n = 1 the answer to all three questions is "all of them". For n ≥ 2 the answers to the second and third questions are the same; in the case n = 2 that answer is "those for which there are only finitely many points...
We set up a general correspondence between algebraic properties of βℕ and sets defined by dynamical properties. In particular, we obtain a dynamical characterization of C-sets, i.e., sets satisfying the strong Central Sets Theorem. As an application, we show that Rado systems are solvable in C-sets.
A method is developed for proving non-amenability of certain automorphism groups of countable structures and is used to show that the automorphism groups of the random poset and random distributive lattice are not amenable. The universal minimal flow of the automorphism group of the random distributive lattice is computed as a canonical space of linear orderings but it is also shown that the class of finite distributive lattices does not admit hereditary order expansions with the Amalgamation Property....
Relative dimensions of isotypic components of th order tensor representations of the symmetric group on letters give a Plancherel-type measure on the space of Young diagrams with cells and at most rows. It was conjectured by G. Olshanski that dimensions of isotypic components of tensor representations of finite symmetric groups, after appropriate normalization, converge to a constant with respect to this family of Plancherel-type measures in the limit when converges to a constant. The main...