An extension of the Stone representation for orthomodular lattices
We prove an extension theorem for modular measures on lattice ordered effect algebras. This is used to obtain a representation of these measures by the classical ones. With the aid of this theorem we transfer control theorems, Vitali-Hahn-Saks, Nikodým theorems and range theorems to this setting.
A mathematical model for conjectures (including hypotheses, consequences and speculations), was recently introduced, in the context of ortholattices, by Trillas, Cubillo and Castiñeira (Artificial Intelligence 117, 2000, 255-257). The aim of the present paper is to further clarify the structure of this model by studying its relationships with one of the most important ortholattices' relation, the orthogonality relation. The particular case of orthomodular lattices -the framework for both Boolean...
The main result of this paper is Theorem 3.3: Every concrete logic (i.e., every set-representable orthomodular poset) can be enlarged to a concrete logic with a given automorphism group and with a given center. Since every sublogic of a concrete logic is concrete, too, and since not every state space of a (general) quantum logic is affinely homeomorphic to the state space of a concrete logic [8], our result seems in a sense the best possible. Further, we show that every group is an automorphism...
This paper deals with the sets of strict conjectures and consequences of a given collection P of premises. The set of Averaging Functions is introduced on lattices and some properties of these functions are shown. Averaging Functions allow to interpret restricted consequences as averages of premises. The subset of consequences C9*(P) and the subset of conjectures Φg*(P) defined by means of the averaging function g are introduced, and their properties are studied. This sets allow to give decomposition...
We introduce the notion of p-ideal of a QMV-algebra and we prove that the class of all p-ideals of a QMV-algebra M is in one-to-one correspondence with the class of all congruence relations of M.