Displaying 41 – 60 of 83

Showing per page

On the structure of intuitionistic algebras with relational probabilities.

Francesc Esteva (1988)

Stochastica

Trillas ([1]) has defined a relational probability on an intuitionistic algebra and has given its basic properties. The main results of this paper are two. The first one says that a relational probability on a intuitionistic algebra defines a congruence such that the quotient is a Boolean algebra. The second one shows that relational probabilities are, in most cases, extensions of conditional probabilities on Boolean algebras.

Ring-like structures with unique symmetric difference related to quantum logic

Dietmar Dorninger, Helmut Länger, Maciej Maczyński (2001)

Discussiones Mathematicae - General Algebra and Applications

Ring-like quantum structures generalizing Boolean rings and having the property that the terms corresponding to the two normal forms of the symmetric difference in Boolean algebras coincide are investigated. Subclasses of these structures are algebraically characterized and related to quantum logic. In particular, a physical interpretation of the proposed model following Mackey's approach to axiomatic quantum mechanics is given.

Currently displaying 41 – 60 of 83