A characterisation of lattice-ordered abelian groups.
Page 1 Next
George A. Elliott, Daniele Mundici (1993)
Mathematische Zeitschrift
K. Rosenthal (1984)
Semigroup forum
Daniele Mundici, Giovanni Panti (1999)
Banach Center Publications
We discuss the ultrasimplicial property of lattice-ordered abelian groups and their associated MV-algebras. We give a constructive proof of the fact that every lattice-ordered abelian group generated by three elements is ultrasimplicial.
Andrew M. W. Glass (1984)
Czechoslovak Mathematical Journal
Ih-ching Hsu (1975)
Aequationes mathematicae
Ih-Ching Hsu (1975)
Aequationes mathematicae
Jiří Močkoř (1979)
Archivum Mathematicum
Stefan Veldsman (1987)
Commentationes Mathematicae Universitatis Carolinae
Beloslav Riečan (1982)
Mathematica Slovaca
Mária Jakubíková (1973)
Matematický časopis
S.M. Fakhruddin (1986)
Semigroup forum
Á. Száz, G. Száz (1980)
Aequationes mathematicae
Á. Száz, G. Száz (1979)
Aequationes mathematicae
Filip Švrček (2006)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
In the paper an additive closure operator on an abelian unital -group is introduced and one studies the mutual relation of such operators and of additive closure ones on the -algebra .
Ján Jakubík (2005)
Czechoslovak Mathematical Journal
In this paper it is proved that an abelian lattice ordered group which can be expressed as a nontrivial lexicographic product is never affine complete.
Ján Jakubík, Mária Csontóová (1998)
Czechoslovak Mathematical Journal
Anthony W. Hager, James J. Madden (1984)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Francesco Lacava (2001)
Bollettino dell'Unione Matematica Italiana
We prove some properties of quasi-local Ł-algebras. These properties allow us to give a structure theorem for Stonean quasi-local Ł-algebras. With this characterization we are able to exhibit an example which provides a negative answer to the first problem posed in [4].
Ján Jakubík (1978)
Czechoslovak Mathematical Journal
Foulis, David J. (2003)
International Journal of Mathematics and Mathematical Sciences
Page 1 Next