Quasitriangular Hopf group algebras and braided monoidal categories
Let be a group, and be a semi-Hopf -algebra. We first show that the category of left -modules over is a monoidal category with a suitably defined tensor product and each element in induces a strict monoidal functor from to itself. Then we introduce the concept of quasitriangular semi-Hopf -algebra, and show that a semi-Hopf -algebra is quasitriangular if and only if the category is a braided monoidal category and is a strict braided monoidal functor for any . Finally,...