Lattice valued algebras.
In this paper we propose a general approach to the theory of fuzzy algebras, while the early existing papers deal with a particular type of fuzzy structures as fuzzy groups, fuzzy ideals, fuzzy vector spaces and so on.
In this paper we propose a general approach to the theory of fuzzy algebras, while the early existing papers deal with a particular type of fuzzy structures as fuzzy groups, fuzzy ideals, fuzzy vector spaces and so on.
We consider general properties of lattices of relative colour-families and antivarieties. Several results generalise the corresponding assertions about colour-families of undirected loopless graphs, see [1]. Conditions are indicated under which relative colour-families form a lattice. We prove that such a lattice is distributive. In the class of lattices of antivarieties of relation structures of finite signature, we distinguish the most complicated (universal) objects. Meet decompositions in lattices...
We find the basis of all linear identities which are true in the variety of entropic graph algebras. We apply it to describe the lattice of all subvarieties of power entropic graph algebras.