Semi-abelian monadic categories.
Irregular (quasi)varieties of groupoids are (quasi)varieties that do not contain semilattices. The regularization of a (strongly) irregular variety of groupoids is the smallest variety containing and the variety of semilattices. Its quasiregularization is the smallest quasivariety containing and . In an earlier paper the authors described the lattice of quasivarieties of cancellative commutative binary modes, i.e. idempotent commutative and entropic (or medial) groupoids. They are all irregular...
We develop a theory of split extensions of unitary magmas, which includes defining such extensions and describing them via suitably defined semidirect product, yielding an equivalence between the categories of split extensions and of (suitably defined) actions of unitary magmas on unitary magmas. The class of split extensions is pullback stable but not closed under composition. We introduce two subclasses of it that have both of these properties.