Kennzeichnung von Mengen mit einer additiven Minimaleigenschaft.
Mehdi Djawadi (1979)
Journal für die reine und angewandte Mathematik
Ioannis Konstantoulas (2013)
Acta Arithmetica
We study representation functions of asymptotic additive bases and more general subsets of ℕ (sets with few nonrepresentable numbers). We prove that if ℕ∖(A+A) has sufficiently small upper density (as in the case of asymptotic bases) then there are infinitely many numbers with more than five representations in A+A, counting order.
Petojević, Aleksandar (2005)
Novi Sad Journal of Mathematics
Tang, Chi-Wu, Tang, Min (2010)
Integers
Yong-Gao Chen (2015)
Acta Arithmetica
Two infinite sequences A and B of non-negative integers are called infinite additive complements if their sum contains all sufficiently large integers. In 1994, Sárközy and Szemerédi conjectured that there exist infinite additive complements A and B with lim sup A(x)B(x)/x ≤ 1 and A(x)B(x)-x = O(minA(x),B(x)), where A(x) and B(x) are the counting functions of A and B, respectively. We prove that, for infinite additive complements A and B, if lim sup A(x)B(x)/x ≤ 1, then, for any given M > 1,...
Tomasz Łuczak, Tomasz Schoen (2008)
Acta Arithmetica
Gabor Horvath (2002)
Acta Arithmetica
Y. G. Chen, Bin Wang (2003)
Acta Arithmetica
Artūras Dubickas, Gražvydas Šemetulskis (2011)
Acta Arithmetica
P. Erdös (1968)
Aequationes mathematicae
Marín, J.M., Ramírez Alfonsín, J.L., Revuelta, M.P. (2007)
Integers
Sándor Z. Kiss (2009)
Acta Arithmetica
Petojević, Aleksandar (2004)
Novi Sad Journal of Mathematics
Sándor, Csaba (2004)
Integers
Almkvist, Gert (2002)
Experimental Mathematics
P. Erdös, A. Sárközy, V.T. Sós (1986)
Monatshefte für Mathematik
Melvyn B. Nathanson (2009)
Journal de Théorie des Nombres de Bordeaux
Let be a linear form with nonzero integer coefficients Let be an -tuple of finite sets of integers and let be an infinite set of integers. Define the representation function associated to the form and the sets and as follows :If this representation function is constant, then the set is periodic and the period of will be bounded in terms of the diameter of the finite set Other results for complementing sets with respect to linear forms are also proved.
Jean-Marc Deshouillers (2007)
Journal de Théorie des Nombres de Bordeaux
Soit , un nombre premier et une partie de de cardinal supérieur à telle que pour tout sous-ensemble non vide de , on a . On montre qu’il existe premier à tel que l’ensemble est très concentré autour de l’origine et qu’il est presque entièrement composé d’éléments de partie fractionnaire positive. Plus précisément, on aOn montre également que les termes d’erreurs ne peuvent être remplacés par .
A. Muffat (1877)
Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale
Lev, Vsevolod F. (2004)
The Electronic Journal of Combinatorics [electronic only]