On the period of the continued fraction for values of the square root of power sums
Romanoff (1934) showed that integers that are the sum of a prime and a power of 2 have positive lower asymptotic density in the positive integers. We adapt his method by showing more generally the existence of a positive lower asymptotic density for integers that are the sum of a prime and a term of a given nonconstant nondegenerate integral linear recurrence with separable characteristic polynomial.