The 99th Fibonacci identity.
The search session has expired. Please query the service again.
Page 1 Next
Benjamin, Arthur T., Eustis, Alex K., Plott, Sean S. (2008)
The Electronic Journal of Combinatorics [electronic only]
Paulo Ribenboim (2001)
Acta Arithmetica
Esayas George Kundert (1982)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Si associano ad una matrice infinita di un certo tipo altre due matrici dello stesso tipo, dette rispettivamente bernoulliana e antibernoulliana di A. Si studiano alcune proprietà di queste matrici. Si ottiene in tal via una generalizzazione dei classici numeri di Bernoulli.
Ruskey, Frank, Deugau, Chris (2009)
Journal of Integer Sequences [electronic only]
Udrea, Gheorghe (1998)
Portugaliae Mathematica
A. Zulauf (1977)
Journal für die reine und angewandte Mathematik
H. Niederreiter (1973)
Mathematische Annalen
Mark D. Morgan (1998)
Acta Arithmetica
Vera W. de Spinadel (1999)
Visual Mathematics
Euler, Reinhardt (2005)
Journal of Integer Sequences [electronic only]
Alexey Stakhov, Boris Rozin (2006)
Visual Mathematics
Sergio Falcon (2011)
Open Mathematics
We define the k-Fibonacci matrix as an extension of the classical Fibonacci matrix and relationed with the k-Fibonacci numbers. Then we give two factorizations of the Pascal matrix involving the k-Fibonacci matrix and two new matrices, L and R. As a consequence we find some combinatorial formulas involving the k-Fibonacci numbers.
Austin, Tracale, Bantilan, Hans, Egge, Eric S., Jonas, Isao, Kory, Paul (2009)
Journal of Integer Sequences [electronic only]
Herbert S. Wilf, Donald E. Knuth (1989)
Journal für die reine und angewandte Mathematik
Mollin, R.A. (1987)
International Journal of Mathematics and Mathematical Sciences
Smyth, Chris (2010)
Journal of Integer Sequences [electronic only]
Olcay Karaatlı (2016)
Acta Arithmetica
Let Vₙ(P,Q) denote the generalized Lucas sequence with parameters P and Q. For all odd relatively prime values of P and Q such that P² + 4Q > 0, we determine all indices n such that Vₙ(P,Q) = 7kx² when k|P. As an application, we determine all indices n such that the equation Vₙ = 21x² has solutions.
Rosema, S.W., Tijdeman, R. (2005)
Integers
Katz, Matt, Stenson, Catherine (2009)
Journal of Integer Sequences [electronic only]
Shattuck, Mark (2008)
Integers
Page 1 Next