.
Using the lower bound of linear forms in logarithms of Matveev and the theory of continued fractions by means of a variation of a result of Dujella and Pethő, we find all -Fibonacci and -Lucas numbers which are Fermat numbers. Some more general results are given.
In occasione della commemorazione dell’800-esimo anniversario della pubblicazione del Liber Abaci, desidero richiamare l’attenzione del lettore su alcuni dei fatti che preferisco riguardanti numeri di Fibonacci. Tali fatti includono la presenza di quadrati, di multipli di quadrati e di numeri potenti tra i numeri di Fibonacci, la rappresentazione di numeri reali e la costruzione di numeri trascendenti mediante numeri di Fibonacci, la possibilità di costruire una serie zeta ed un dominio a fattorizzazione...
Let Fₙ be the Fibonacci sequence defined by F₀=0, F₁=1, . It is well known that for any odd prime p, where (-) denotes the Legendre symbol. In 1960 D. D. Wall [13] asked whether is always impossible; up to now this is still open. In this paper the sum is expressed in terms of Fibonacci numbers. As applications we obtain a new formula for the Fibonacci quotient and a criterion for the relation (if p ≡ 1 (mod 4), where p ≠ 5 is an odd prime. We also prove that the affirmative answer to...
We show that if m > 1 is a Fibonacci number such that ϕ(m) | m-1, where ϕ is the Euler function, then m is prime
I numeri incompleti di Fibonacci e di Lucas, introdotti da Filipponi (1996), sono entrambi generalizzati in forma di polinomi. Le loro funzioni generatrici ridondanti, naturali e condizionate sono stabilite attraverso serie formali di potenze. Le funzioni generatrici relative alle sequenze di numeri dovute a Pinter e Srivastava (1999) sono contenute come casi particolari.