The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Lacunary formal power series and the Stern-Brocot sequence

Jean-Paul Allouche, Michel Mendès France (2013)

Acta Arithmetica

Let F ( X ) = n 0 ( - 1 ) ε X - λ be a real lacunary formal power series, where εₙ = 0,1 and λ n + 1 / λ > 2 . It is known that the denominators Qₙ(X) of the convergents of its continued fraction expansion are polynomials with coefficients 0, ±1, and that the number of nonzero terms in Qₙ(X) is the nth term of the Stern-Brocot sequence. We show that replacing the index n by any 2-adic integer ω makes sense. We prove that Q ω ( X ) is a polynomial if and only if ω ∈ ℤ. In all the other cases Q ω ( X ) is an infinite formal power series; we discuss its algebraic...

Le semi-groupe libre des carrés magiques

Lionel Cozar (1996)

Journal de théorie des nombres de Bordeaux

Nous étudions une loi de composition sur les carrés magiques, qui a déjà été introduite dans la littérature, qui munit l'ensemble de tous les carrés magiques d'une structure de semi-groupe (monoïde). Nous prouvons ensuite une conjecture de Adler et Li, ce semi-groupe est libre.

Currently displaying 1 – 4 of 4

Page 1