Tabulka binomických koefficientů 1 n r Čeněk Jarolímek (1889) Časopis pro pěstování mathematiky a fysiky
The Euler series transformation and the binomial identities of Ljunggren, Munarini and Simons. Boyadzhiev, Khristo N. (2010) Integers
The function v M m ( s ; a , z ) and some well-known sequences. Petojević, Aleksandar (2002) Journal of Integer Sequences [electronic only]
The k -binomial transforms and the Hankel transform. Spivey, Michael Z., Steil, Laura L. (2006) Journal of Integer Sequences [electronic only]
The Kazandzidis supercongruences. A simple proof and an application Alain Robert, Maxime Zuber (1995) Rendiconti del Seminario Matematico della Università di Padova
The Lagrange inversion formula and divisibility properties. Woan, Wen-jin (2007) Journal of Integer Sequences [electronic only]
The last digit of 2 n n and ∑ n i 2 n - 2 i n - 1 . Shur, Walter (1997) The Electronic Journal of Combinatorics [electronic only]
The number of binomial coefficients in residue classes modulo p and p 2 . William A. Webb (1990) Colloquium Mathematicae
The number of topologies on a finite set. Benoumhani, Moussa (2006) Journal of Integer Sequences [electronic only]
The p-adic valuation of k-central binomial coefficients Armin Straub, Victor H. Moll, Tewodros Amdeberhan (2009) Acta Arithmetica
Transforming recurrent sequences by using the binomial and invert operators. Barbero, Stefano, Cerruti, Umberto, Murru, Nadir (2010) Journal of Integer Sequences [electronic only]
Truncations of Gauss' square exponent theorem Ji-Cai Liu, Shan-Shan Zhao (2022) Czechoslovak Mathematical Journal We establish two truncations of Gauss’ square exponent theorem and a finite extension of Euler’s identity. For instance, we prove that for any positive integer n , ∑ k = 0 n ( - 1 ) k 2 n - k k ( q ; q 2 ) n - k q k + 1 2 = ∑ k = - n n ( - 1 ) k q k 2 , where n m = ∏ k = 1 m 1 - q n - k + 1 1 - q k and ( a ; q ) n = ∏ k = 0 n - 1 ( 1 - a q k ) .
Two q -identities from the theory of fountains and histograms proved with a tri-diagonal determinant. Prodinger, Helmut (2005) Integers
Two very short proofs of combinatorial identity. Anglani, Roberto, Barile, Margherita (2005) Integers